Search results for "stress-strain curve"

showing 7 items of 7 documents

Influence of steel reinforcements on the behavior of compressed high strength R.C. circular columns

2012

Abstract In the present paper the focus is on the compressive response of short high strength reinforced concrete members having circular transverse cross-sections and reinforced with longitudinal steel bars and transverse spirals or hoops. An analytical model is proposed which allows one to estimate the confinement pressures exerted by transverse steel and by longitudinal bars during the loading process, taking into account the interaction of the hoops or spirals with the inner core both in the plane of the transverse steel and in the space between two successive hoops. Yielding of steel spirals or hoops and longitudinal bars including buckling phenomena and damage to the concrete core are…

High strength concreteMaterials sciencebusiness.industryPlane (geometry)BucklingStress–strain curveInner coreCompressionStructural engineeringCompression (physics)Core (optical fiber)Transverse planeSettore ICAR/09 - Tecnica Delle CostruzioniBucklingStress-strain curveComposite materialbusinessElastic modulusConfinementCivil and Structural Engineering
researchProduct

Stress-strain models for normal and high strength confined concrete: Test and comparison of literature models reliability in reproducing experimental…

2017

SUMMARY: The adoption of proper constitutive laws for confined concrete is basic for seismic assessment of new and existing reinforced concrete civil structures. The deformation capacity of reinforced concrete (RC) columns subjected to axially centred and eccentric loads depends on the effectiveness confinement action. A proper assignment of the stressstrainlaws for concrete allows obtaining an adequate definition of the ductility of the crosssections and correctly identifying mechanical nonlinearities in computational models.Several studies concerning the behaviour of confined concrete have been carried out, highlighting the role of different geometrical and mechanical parameters to the ov…

RiskHigh strength concreteReinforced concrete (RC)Concrete constitutive modelsReliability and QualityConcrete constitutive models; Confined concrete; High strength concrete; Normal strength concrete; Reinforced concrete (RC); Building and Construction; Safety Risk Reliability and Quality; Geotechnical Engineering and Engineering GeologyHigh performance concrete Reinforced concrete Reliability Stress-strain curvesBuilding and ConstructionSafetyGeotechnical Engineering and Engineering GeologyConfined concreteNormal strength concrete
researchProduct

Apparent interfacial shear strength of short-flax-fiber/starch acetate composites

2016

Abstract The paper deals with an indirect industry-friendly method for identification of the interfacial shear strength (IFSS) in a fully bio-based composite. The IFSS of flax fiber/starch acetate is evaluated by a modified Bowyer and Bader method based on an analysis of the stress–strain curve of a short-fiber-reinforced composite in tension. A shear lag model is developed for the tensile stress–strain response of short-fiber-reinforced composites allowing for an elastic-perfectly plastic stress transfer. Composites with different fiber volume fractions and a variable content of plasticizer have been analyzed. The apparent IFSS of flax/starch acetate is within the range of 5.5–20.5 MPa, de…

Interfacial shear strengthMaterials sciencePolymers and PlasticsApparent interfacial shear strengthGeneral Chemical EngineeringComposite numberSheet molding compoundsGreen composites02 engineering and technology010402 general chemistry01 natural sciencesBiomaterialsFlax fiberPlasticizersFlaxYarnUltimate tensile strengthChemical Engineering (all)Composite materialThermoplastic starchchemistry.chemical_classificationFiber volume fractionsFlax fiberElastic perfectly plasticStress–strain curvePlasticizerPolymer021001 nanoscience & nanotechnologyFiber reinforced plasticsReinforcement0104 chemical sciencesFibersStress-strain curvesReinforced plasticsInterfacial shearchemistryShort-fiber-reinforced compositesAdhesiveGreen composite0210 nano-technologyLinenInternational Journal of Adhesion and Adhesives
researchProduct

Behaviour in compression of lightweight fiber reinforced concrete confined with transverse steel reinforcement

2004

Abstract The compressive behavior of lightweight fiber reinforced concrete confined with transverse reinforcement consisting of steel stirrups or spirals was analyzed. Pumice stone and expanded clay aggregates were utilized to decrease the weight of the composite; hooked steel fibers were also added. The investigation was carried out by testing cylindrical and prismatic specimens of different sizes in compression using an open-loop displacement control machine, recording the full load–deformation curves. The influence of the dimensions and shape on the bearing capacity and on the ductility of the specimens confined with transverse steel reinforcements was analyzed. The results show the poss…

Materials sciencebusiness.industryStress–strain curveComposite numberlightweight concrete pumice stone expanded clay steel fibers steel transverse reinforcement compression tests stress-strain curves shape effectsBuilding and ConstructionFiber-reinforced concreteStructural engineeringCompression (physics)law.inventionTransverse planelawGeneral Materials ScienceBearing capacityComposite materialReinforcementDuctilitybusiness
researchProduct

Compressive behavior of short fibrous reinforced concrete members with square cross-section

2011

In the present paper a mechanical model to predict the compressive response of high strength short concrete columns with square cross-section confined by transverse steel is presented. The model allows one to estimate the equivalent confinement pressures exercised by transverse steel during the loading process taking into account of the interaction of the stirrups with the inner core both in the plane of the stirrups and in the space between two successive stirrups. The lateral pressure distributions at hoop levels are obtained by using a simple model of elastic beam on elastic medium simulating the interaction between stirrups and concrete core, including yielding of steel stirrups and dam…

Materials sciencebusiness.industryMechanical Engineeringhigh strength concreteBuilding and ConstructionStructural engineeringCompression (physics)Reinforced concreteSpallcompressionCore (optical fiber)Settore ICAR/09 - Tecnica Delle CostruzioniTransverse planeconfinement stress-strain curves.BucklingMechanics of MaterialsReinforced solidBearing capacityComposite materialbusinessCivil and Structural EngineeringStructural Engineering and Mechanics
researchProduct

Optimal design algorithm for seismic retrofitting of RC columns with steel jacketing technique

2020

Abstract Steel jacketing (SJ) of beams and columns is widely employed as retrofitting technique to provide additional deformation and strength capacity to existing reinforced concrete (RC) frame structures. The latter are many times designed without considering seismic loads, or present inadequate seismic detailing. The use of SJ is generally associated with non-negligible costs depending on the amount of structural work and non-structural manufacturing and materials. Moreover, this kind of intervention results in noticeable downtime for the building. This paper presents a new optimization framework which is aimed at obtaining minimization of retrofitting costs by optimizing the position an…

Optimal design0209 industrial biotechnologyDowntimeComputer scienceOpenSEESSeismic loadingsteel jacketing02 engineering and technologyIndustrial and Manufacturing EngineeringEngineering optimizationSettore ICAR/09 - Tecnica Delle Costruzioni020303 mechanical engineering & transports020901 industrial engineering & automationOpenSees0203 mechanical engineeringArtificial IntelligenceconfinementGenetic algorithmRetrofittingSeismic retrofitconfinement; OpenSEES; optimization; steel jacketing; stress-strain curvestress-strain curveAlgorithmoptimization
researchProduct

Compressive behavior of short high-strength concrete columns

2010

Abstract The focus of the present paper is the compressive response of short high strength reinforced concrete members. Members have square transverse cross-sections and they are reinforced with longitudinal steel bars and transverse stirrups. A preliminary analysis to check the stability condition of longitudinal bars was made to verify that buckling occurs after yielding in compression. Prescriptions on required diameter and spacing of stirrups are given. In the following, a model is presented which allows us to evaluate the confinement pressures exercised by transverse steel and by longitudinal bars during the loading process taking into account the interaction of the stirrups with the i…

High strength concreteEngineeringbusiness.industryStress–strain curveCompressionStructural engineeringCompression (physics)StirrupCore (optical fiber)Stress-strain curvesTransverse planeCompressive strengthBucklingconfinementbucklingbusinessElastic modulusCivil and Structural EngineeringEngineering Structures
researchProduct